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Fractal heterogeneous media
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A method is presented for generating compact fractal disordered media by generalizing the random midpoint
displacement algorithm. The obtained structures are invasive stochastic fractals, with the Hurst exponent
varying as a continuous parameter, as opposed to lacunar deterministic fractals, such as the Menger sponge.
By employing the detrending moving average algorithm [A. Carbone, Phys. Rev. E 76, 056703 (2007)], the
Hurst exponent of the generated structure can be subsequently checked. The fractality of such a structure is
referred to a property defined over a three-dimensional topology rather than to the topology itself. Conse-
quently, in this framework, the Hurst exponent should be intended as an estimator of compactness rather than
of roughness. Applications can be envisaged for simulating and quantifying complex systems characterized by
self-similar heterogeneity across space. For example, exploitation areas range from the design and control of
multifunctional self-assembled artificial nanostructures and microstructures to the analysis and modeling of

complex pattern formation in biology, environmental sciences, geomorphological sciences, etc.
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I. INTRODUCTION

Real world materials, such as stable and metastable lig-
uids, glasses, defective crystals, and structures that evolve
from nonequilibrium processes, always exhibit a certain de-
gree of disorder. On the other hand, the design of artificial
heterogeneous structures and the accurate control of their
structural, chemical or orientational disorder is an area of
intensive investigation for fundamental and technological in-
terest [1-13]. Recent developments in nanophotonics have
shown that it is possible to make use of the intrinsic disorder
in natural and photonic materials to create new optical struc-
tures and functionalities [ 14]. Fractal bodies, such as Menger
sponges [15], have demonstrated the ability to perform novel
functions as localize electromagnetic and acoustic waves
[16—18] or enhance superliquid repellency or dewettability
[19,20]. The reconstruction of heterogeneous media, from
the knowledge of the correlation function, is a challenging
inverse problem. Any reconstruction procedure requires to be
effectively controlled in order to enable the prediction, de-
sign, and implementation of structures exhibiting the desired
electromagnetic, transport, or biological functions [21-28].

The disorder degree of a medium can be quantified in
terms of the two-point correlation function C(r;,r,)
=(f(r,)f(r,)) of a relevant quantity f(r) (e.g., dielectric func-
tion, porosity, density), where r,,r, are two arbitrary points
in the system. For statistically isotropic media, C(r;,r,) de-
pends only on the distance A\=||r,—r,|| between two points;
thus, it is written as C(\). For fully uncorrelated systems,
such as the ideal gas, the correlation function is a simple
exponential, C(\) xexp(—\/a), while for fully ordered me-
dia, such as the perfect lattice, the correlation function C(\)
is a constant. Generally, heterogeneous materials exhibit
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forms of correlation which are intermediate between those of
the ideal gas and the perfect lattice.

Fractional Brownian functions are characterized by a cor-
relation function depending as a power law on A [29,30].
Such a correlation may reasonably account for the interme-
diate behavior, between the fully uncorrelated exponential
and the fully correlated constant decay, exhibited by real
disordered media. The power-law correlation of fractional
Brownian functions can be expressed by the power-law de-
pendence of the variance,

Lfulr+N) = fu( P = NP, (1)

with fu(r):RI=R, with r=(x,X, ..., Xy), N

=\, A2, .. ,0y), and [N|= VAT 4N+ +N5. H is the Hurst
exponent, which is related to the fractal dimension through
the relation D=d+1-H, with d the embedded Euclidean di-
mension. H ranges from 0 to 1, taking the values H=0.5,
H>0.5, and H<0.5 respectively for uncorrelated, correlated
and anticorrelated Brownian functions.

Concepts such as scaling, criticality, and fractality have
been proven useful to model dynamic processes; stress-
induced morphological transformation; isotropic and aniso-
tropic fracture surfaces; static friction between materials
dominated by hard-core interactions; elastic and contact
properties; diffusion and transport in porous and composite
materials; mass fractal features in wet/dried gels, liposome,
and colloids; physiological organs (e.g., lung); and polariz-
abilities, hydrophobicity of surfaces with hierarchic structure
undergoing natural selection mechanism and solubility of
nanoparticles. Several quantification methods have been pro-
posed to accomplish accurate and fast estimates of power-
law correlations at different scales [31-44].

In the present work (1) a compact invasive stochastic
fractal structure is obtained by generalizing the random mid-
point displacement (RMD) algorithm to high dimension
(Sec. II). In topological dimension d=3, a fractal cube with
size N; X N, X Nj is obtained, whose relevant property (e.g.,
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density, dielectric function, porosity) is described as a three-
dimensional fractional Brownian field f(r). As opposed to
deterministic lacunar fractals, such as the Menger sponge
whose fractal dimension is equal to 2.7268, the obtained me-
dium is a stochastic invasive fractal. By varying the Hurst
exponent, which is given as input of the algorithm, between
0 and 1, the fractal dimension D is continuously varied be-
tween D=3 and D=4. It is worthy of remark that in this case
the fractal dimension D refers to the compactness rather than
to roughness as in the case of fractal surfaces and interfaces.
Such a structure can be used for describing complex materi-
als with correlation function exhibiting a power-law depen-
dence over distance and arbitrary degree of heterogeneity
expressed by H.

(2) The degree of disorder of the medium is quantified in
terms of the Hurst exponent, whose estimate is provided by
the detrended moving average (DMA) algorithm [34] (Sec.
II). The algorithm calculates the generalized variance
opua(s) of the fractional Brownian fields fy(r) around the

three-dimensional moving average function fu(r.s). The
generalized variance opy,(s) is estimated over subcubes
with size n; X n, X n3 and, then, summed over the whole do-
main N; X N, X N5 of the fractal cube. The value of opy4(s)
for each subcube is then plotted in log-log scale as a function
of v—\'n +n2+n3 The linearity of this plot guarantees the
power-law dependence of the correlation over the investi-
gated range of scales. The slope of the plot yields the Hurst
exponent H of the fractional Brownian field.

II. GENERATION OF COMPLEX HETEROGENEOUS
MEDIA

The random midpoint displacement algorithm is a recur-
sive technique widely used for generating fractal series and
surfaces. In d=1, a fractional Brownian walk is obtained
starting from a line of length N. At each iteration j, the value
at the midpoint is calculated as the average of the two end
points plus a correction which scales as the inverse of the
length of half segment with exponent H. The fractal dimen-
sion is D=2—-H, varying between 1 and 2. Fractal surfaces
with desired roughness can be generated starting from a
plane, whose domain is a regularly spaced square lattice with
size Ny XN,, i1=1,2,...,Ny, and i,=1,2,...,N,. First, the
square is divided in four subsquares. Then, the value in the
center of the square is calculated as the average of the values
at the four vertices plus a random term. Then, the four values
at the midpoint of the edges are obtained as the average of
the values at the two adjacent vertices plus a random term.
The process is repeated until the fractal surface is obtained.
The fractal dimension is D=3—H, varying between 2 and 3.
Here, a high-dimensional implementation of the algorithm is
presented for obtaining a compact body, exhibiting power-
law correlation over a wide span of scales.

A. d-dimensional random midpoint displacement algorithm

Here, the random midpoint displacement algorithm is
generalized to be operated on arrays with arbitrary Euclidean
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dimension d. The procedure is generalized by defining the
function,

) = 10+ @

which is defined at the center of a hypercubic equally spaced
lattice. The sum is calculated over the k end points of the
lattice. The explicit expression of the quantity o;, at each
iteration j is worked out below. We start from Eq. (1) that is
written as

Lfa(r+N) = fu(M P = 2N+ N5+ -+ A, (3)

by considering a hypercubic lattice with size Ny=N,="-*
=N,=N, Eq. (3) is written as

(fulr+N) —fH(”)]2> =

By dividing each lattice size by a factor 2 at each iteration,
Eq. (4) is rewritten as

([afro)-] )= 2" o

Moreover, at each iteration, the following relation holds:

<[fH<r+ ) fH(r)D:ﬁqu(H - fH(r)]>

+ O-id’ (6)

oﬁ( \r’gN)ZH . (4)

being the value of fz(r) at each step of the algorithm calcu-
lated over two points for d=1 (extremes of a segment), four
points for d=2 (vertices of a square), eight points for d=3
and so on. By using Eq. (5), Eq. (6) becomes

) V/;ZN 2H oﬁ \e’EN 2H )
g, 7 =F F +Uj,d’ (7)

and the term O'Jz-’d is written as

iar\ 2H
o?,d=oﬁ<%v) [1- 220, (®)

which is the generalized form of the relationship holding for
d=1 [45].

B. Three-dimensional media

Here, Egs. (2) and (8) are used to yield a compact random
fractal with embedded Euclidean dimension d=3. As already
stated, the relevant property of the disordered medium is
defined by the scalar function fy(r):R*—R, with r
=(x,x,,x3). To generate the fractal structure, a cubic array
with size Ny X N, X N3 is defined. Initially, the cube is fully
homogeneous with the function describing the fractal prop-
erty of the medium is taken as a constant, e.g., fz(r)=0.

Then, the algorithm is implemented at each iteration j
according to the following steps:
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FIG. 1. (Color online) Scheme of the elementary steps of the implementation described in Sec. II. Step 1: the homogeneous cube is
divided in 27 subcubes (a). Step 2: the function is calculated at the subcubes located at the eight vertices (b). Step 3: the function is calculated
at the subcube located in the center (c). Step 4: the function is calculated at subcubes located at the center of the six faces (d). Step 5: the
function is calculated at the subcubes located at the midpoint of the 12 edges.

(i) Step 1. The cube is divided in 27 subcubes, as shown
in Fig. 1(a).

(i) Step 2. The values of the function f}; ;(r) are seeded as
random variables of average value 0 and standard deviation
0;3 at the eight subcubes located at the eight vertices, as
shown in Fig. 1(b):

(iii) Step 3. The values of the function f, ;(r), at the cen-
tral subcube, are calculated as follows:

3
= fulr) + g3, )

J H, j(” )= 3
k=1

where the sum is performed over the k-values taken by the

function f(r) at the subcubes located at the eight vertices of

the main cube. The quantity o; 5 satisfies the relation

) 2(\/§N
0'j3=0'0 —
5 2]

2H
) [1—220H=9], (10)
(iv) Step 4. The values of the function fy ;(r), defined over
the subcubes located at the center of the six faces, are calcu-
lated as follows:

4
1
fH,j(”)=ZkEfk(r)+0'j,2, (11)
=1

where the sum is performed over the k-values taken by the
function f ;(r) at the subcubes placed at the four vertices of
each face. The quantity o, satisfies the relation

(i

T

2H
=0, ) [1-220H-27, (12)
(v) Step 5. The values of the function fy ;(r) at the subcubes
located at the midpoint of the twelve edges, are calculated
according to

2
1
fH,j(r)=5k2fk(r)+o-j,l, (13)
=1

where the sum is performed over the k values taken by the
function f(r) at the subcubes located at the end points of the
12 edges. The quantity o, satisfies the relation

o= a%(lz—vj>2H[1 - 22H0], (14)

Js

Hence, the function fy ;(r) at the subcubes located at the
midpoint of each edge takes a value given by the average of
the function at the end-point subcubes plus the quantity o7 ;.

The first run of the routine results in 27 subcubes, char-
acterized by the values of the function f5(r) described above.
The structure obtained at the first iteration is shown in Fig.
1(e). The steps 1-5 are iteratively repeated for each of the 27
subcubes. At the second run, a number of subcubes equal to
27X 27 are obtained. Eventually, the number of subcubes
will be equal to (3/)%, where j is the iteration number and
d=3.

In Fig. 2, the fractal cubes with Hurst exponent (a) H
=0.2, (b) H=0.5, and (c) H=0.8, and fractal dimension (a)
D=3.38, (b) D=3.5, and (c) D=3.2 are shown at iteration j
=9. The Hurst exponent is the input of the generator, which
determines the heterogeneity of the resulting microstructure.
The color map is rescaled in such a way that the lightest
cubes correspond to the value of f5(r) at the initial stage of
the medium, darker dots to the maximum values obtained by
applying the routine to the function f5(r).

An alternative representation can be obtained by relating
the fractional Brownian function fz(r) to the grain size.
Granular structures with different Hurst exponents are shown
in Figs. 3(a)-3(c). In this case, the fractal function fy(r) is
referred to the size (namely, the radius) of the grains, whose
shape is spherical. One can notice that, for anticorrelated
granular media with H=0.2, small grains are more likely to

FIG. 2. (Color online) Fractal media generated according to the
procedure reported in Sec. II. The Hurst exponents are, respectively,
(a) H=0.2, (b) H=0.5, and (c) H=0.8. The fractal dimensions are,
respectively, (a) D=3.8, (b) D=3.5, and (c) D=3.2. The color map
is rescaled in order that white dots correspond to the minimum
values and darkest dots to the maximum values of fy(r).
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FIG. 3. (Color online) Granular structures obtained by consid-
ering spheres with radius described by the function f(r). The Hurst
exponents are, respectively, (a) H=0.2, (b) H=0.5, and (c) H=0.8.
The fractal dimensions are, respectively, (a) D=3.8, (b) D=3.5, and
(c) D=3.2. The average radius of the grains is equal to 2 mm. We
remark that, in order to allow the visualization of the elementary
grains of the media, only a limited number of grains are shown. An
average number of about 10X 10X 10 values (grains) are repre-
sented; i.e., the images correspond only to a small portion of the
whole fractal cube.

be close to large grains and vice versa [as shown in Fig.
3(a)]. Conversely, as the Hurst exponent increases, the grains
segregate according to the size: smaller grains are more
likely to be close to small grains, larger grains are more
likely to be close to large grains [as shown in Fig. 3(c) for
H=0.8]. It is worthy to recall the analogous behavior exhib-
ited by fractional Brownian walks (time series). For nega-
tively correlated series with H<<0.5, positive increments are
more likely to be followed by negative increments and vice
versa. Conversely, in positively correlated series with H
>().5, positive increments are more likely to be followed by
positive increments and vice versa. This corresponds to the
occurrence of clustered events. For the fractal media gener-
ated here, the clustering effect is observed in the sample of
Fig. 3(c). One can notice that larger grains are grouped to-
gether (clustered). Grains with smaller average sizes are
grouped together (clustered) as well. We remark that, in or-
der to allow the visualization of the elementary grains of the
media, only a limited number of grains are shown: an aver-
age number of about 10X 10X 10 values (grains) are repre-
sented in Figs. 3(a)-3(c). Thus, the images correspond only
to a small portion of the whole fractal cube. Such a reduced
size might give the impression that the lack of characteristic
scales is not fulfilled. In particular, a bias (anisotropy) effect
appears in Fig. 3(c), where a cluster of large grains occurs at
the front face, while a cluster of small grains occurs at the
back face. The whole size of the fractal media is 1025
X 1025 X 1025 points, therefore several tenths of clusters of
small or large grains are generated across the bulk rather than
only a couple of clusters as it might appear from Fig. 3(c).

In Figs. 4(a)-4(c), granular fractal structures with differ-
ent average grain sizes having the same Hurst exponent and
fractal dimension (H=0.5,D=3.5) are also shown. The av-
erage radius of the grains is equal to (a) 2 mm, (b) 1.5 mm,
(c) 1 mm, respectively.

III. ESTIMATING THE HURST EXPONENT OF RANDOM

FRACTAL MEDIA

The aim of this section is to implement an independent
measure of the Hurst exponent of the heterogeneous structure

PHYSICAL REVIEW E 81, 026706 (2010)

FIG. 4. (Color online) Granular structures obtained by consid-
ering spheres with the radii described by the function fy(r) with
three different average grain size. The average radius of the grains
is equal to (a) 2 mm, (b) 1.5 mm, and (c) 1 mm, respectively. The
Hurst exponent is H=0.5 and the fractal dimension is D=3.5 for all
the three cases. An average number of about 10X 10X 10, 15
X 15X 15, and 20 X 20 X 20 values (grains) are represented; i.e., the
images correspond only to a small portion of the whole fractal
cubes.

generated according to the procedure in Sec. II (shown in
Figs. 2—4). The detrending moving average algorithm for
estimating the Hurst exponent of fractals with topological
dimension d=2 has been reported in [34]. In the present
work, the algorithm will be implemented on the heteroge-
neous structures generated in Sec. II.

The core of the algorithm is the generalized variance
0hy4(s), which for a three-dimensional structure, is written
as

gals) = éE ) = Fomm P, (15)

where fy(r)=fy(x;,x;,x3) is the fractional Brownian field
with i1=1,2,...,N, i,=1,2,...,N, and i3=1,2,...,N. The

function fnl’nz,%(r) is given by

~ 1
fnl,nz,n3(r) = ;E E EfH(xl - kl’xZ - k2’x3 - k3)’

ky ky k3
(16)

with the size of the subcubes (n,,n,,n3) ranging from (3, 3,
3) to the maximum values (11,45 >Mamaxs>M3mar) - V="1171213 18
the volume of the subcubes. The quantity V=(N,
— 1 max) Vo= Namar) (N3 =R3ma,) 18 the volume of the fractal

cube over which the averages f are defined. As observed in
[34], Egs. (15) and (16) are defined for any geometry of the
subarrays. However, in practice, subcubes with n;=n,=n;
are computationally more suitable for avoiding spurious di-
rectionality and biases in the calculations. The generalized
variance o7,,,,(s) scales as (n}+n3+n3)" because of the fun-
damental property of fractional Brownian functions [Eq. (1)].

Equations (15) and (16) correspond to the isotropic imple-
mentation of the algorithm. The isotropy follows from the
definition of the average }nl,nz,ng(r)’ which is obtained by
summing all the values taken by f(r) at the subcubes cen-
tered in r. As explained in [34], the implementation can be
made anisotropic for fractals having a preferential growth
direction, as for example biological tissues, epitaxial layers,
crack propagation. The anisotropy is accomplished by vary-
ing the sum indexes according to m=int(n;6,), m,
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FIG. 5. (Color online) Log-log plot of O%M 4 (s) for fractal media
with size Ny X N, X N3=1025X 1025 X 1025. The fractal media are
generated by the algorithm proposed in Sec. II, with Hurst exponent
varying from 0.1 to 0.9 with step 0.1. Dashed lines represent the
linear fits. The Hurst exponents can be estimated by means of the
3d-DMA algorithm as explained in Sec. IIIL.

=int(n,0,), and ms=int(n;6;). Upon variation in the param-
eters 6, 6,, and 6 in the range [0, 1] the indexes of the sums
in Egs. (15) and (16) are set within each subcube. In particu-
lar, r coincides, respectively, with (a) one of the vertices for
0,,6,,60;=0 or 1 or with (b) the center for ,=60,=0;=1/2.
The values 6,=6,=6;=1/2 correspond to the isotropic
implementation, while 6,=6,=60;=0 and 6,=6,=6;=1 cor-
respond to the directed implementation. In d=3, the isotropic
implementation implies that the function defined by Eq. (16)
is calculated over subcubes whose center is . Conversely,
the anisotropic implementation implies that the function
fnl’,,z’,%(r) is calculated over subcubes having one of the eight
vertices coinciding with r.

In order to calculate the Hurst exponent of the heteroge-
neous structure, the algorithm is implemented through the
following steps. The function fnl,nz,n3(r) is calculated over
different subcubes by varying n;, n,, and n3 from 3 X3 X3 to

FIG. 6. (Color online) Plot of the local slopes of curves such as
those shown in Fig. 5 obtained as average of ten realizations of
fractal media with Ny XN, X N3=1025X 1025 X 1025, with Hurst
exponent varying from 0.1 to 0.9 with step 0.1. One can notice that
the main deviations occur at the extremes of the scales.

N max X Momax X N3may- The maximum values 7y, 12q0 and
n3,q. depend on the size of the whole fractal. To minimize
finite-size effects, it should be ny,,,, <Ny, 1, <<N,, and
N3mae <<N3. The next step is the calculation of the difference
Su(r) —fnl,nz,%(r) in parentheses of Eq. (15) for each subcube
ny X n, X ny. For each subcube, the corresponding value of
0phy4(s) is calculated and finally plotted on log-log axes. The
log-log plot of a5,,,(s) as a function of s, yields a straight
line with slope H, on account of the following relationship:

o‘%)MA(s) ~ (n%+n§+n§)H~sH. (17)
In Fig. 5, the log-log plots of ¢5,,,(s) vs s are shown for
fractal cubes generated according to the procedure described
in Sec. II. The cubes have Hurst exponents ranging from 0.1
to 0.9 with step 0.1 and size 1025 X 1025 X 1025. The plots
of a'%, () as a function s are linear according to the power-
law behavior expected on the basis of Eq. (17). Dashed lines

TABLE I. Hurst exponents H;, H,, H3, and H, and linear regression coefficients py, p,, p3, and p; of
curves such as those of Fig. 5 obtained as average of ten realizations of heterogeneous media with N;
X Ny X N3=1025X1025X 1025. H, and H, have been calculated by linear fit over the full range of s. H3 and

H, have been calculated by linear fit over the range 10%>=s= 10"

H H, p1 H, P2 H; P3 H, I
0.1 0.1503 0.9962 0.1470 0.9965 0.1520 0.9998 0.1445 0.9995
0.2 0.1973 0.9984 0.1939 0.9984 0.2005 0.9999 0.2028 0.9999
0.3 0.2700 0.9998 0.2688 0.9998 0.2738 0.9999 0.2809 0.9996
0.4 0.3780 0.9984 0.3881 0.9980 0.3718 0.9993 0.3558 0.9997
0.5 0.4467 0.9994 0.4513 0.9994 0.4514 0.9997 0.4656 0.9993
0.6 0.5362 0.9992 0.5418 0.9993 0.5494 0.9996 0.5426 0.9997
0.7 0.6129 0.9996 0.6115 0.9997 0.6349 0.9998 0.6877 0.9992
0.8 0.7430 0.9993 0.7412 0.9995 0.7741 0.9997 0.7863 0.9997
0.9 0.8645 0.9990 0.8747 0.9991 0.8650 0.9999 0.8775 0.9999
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represent the linear fits, with errors and linear regression co-
efficients shown in Table 1. Furthermore, the local slopes of
the curves are plotted in Fig. 6. Deviations from the full
linearity can be observed particularly at the extremes of the
scale.

IV. CONCLUSIONS

We have put forward an algorithm to generate a fully
compact heterogeneous medium, whose fractal dimension
can be continuously varied upon varying the Hurst exponent
between 0 and 1. The generation method is based on a gen-
eralization of the random midpoint displacement algorithm.
In order to check the accuracy of the generator, the Hurst
exponent of the fractals can be estimated by using the high-
dimensional variance o7,,,,(s) defined by Eq. (15). We en-
visage fruitful applications, e.g., in three-dimensional medi-

PHYSICAL REVIEW E 81, 026706 (2010)

cal image analysis, where density or granularity patterns
could be interpreted synthetically by means of fractal de-
scriptors. Generally, such a structure can properly reproduce
complex systems whose heterogeneity is described by corre-
lation decaying as a power law over space. This correlation
corresponds to the intermediate behavior of real structure, as
opposed to the fully uncorrelated exponential decay and the
fully correlated constant decay exhibited respectively by the
correlation function of ideal cases such as the perfect gas and
the regular lattice.
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